Apply MinMaxScaler to column 0

 Great question! Let's carefully analyze the preprocessing step by step.


Dataset

X = np.array([
    [2.0, 'apple'],
    [5.0, 'banana'],
    [1.0, 'apple'],
    [4.0, 'cherry']
])
  • Column 0 = numerical values: [2.0, 5.0, 1.0, 4.0]

  • Column 1 = categorical values: ['apple', 'banana', 'apple', 'cherry']


Step 1: Apply MinMaxScaler to column 0

MinMaxScaler scales values to range [0,1]:

x=xminmaxminx' = \frac{x - \text{min}}{\text{max} - \text{min}}
  • min = 1.0

  • max = 5.0

So, scaled values:

  • For 2.0 → (21)/(51)=1/4=0.25(2-1)/(5-1) = 1/4 = 0.25

  • For 5.0 → (51)/(51)=1(5-1)/(5-1) = 1

  • For 1.0 → (11)/(51)=0(1-1)/(5-1) = 0

  • For 4.0 → (41)/(51)=3/4=0.75(4-1)/(5-1) = 3/4 = 0.75

So numerical column becomes: [0.25, 1, 0, 0.75]


Step 2: Apply OneHotEncoder to column 1

Unique categories: ['apple', 'banana', 'cherry']

  • "apple" → [1, 0, 0]

  • "banana" → [0, 1, 0]

  • "cherry" → [0, 0, 1]


Step 3: Combine results for the first row

First row = [2.0, 'apple']

  • Scaled numeric = 0.25

  • OneHot("apple") = [1, 0, 0]

Final transformed row = [0.25, 1, 0, 0]


✅ Correct Answer: Option 1 → [0.25, 1, 0, 0]


Would you like me to also break this into a small table showing how all rows look after transformation (not just the first)?

Comments

Popular posts from this blog

Understanding Data Leakage in Machine Learning: Causes, Examples, and Prevention

🌳 Understanding Maximum Leaf Nodes in Decision Trees (Scikit-Learn)

Linear Regression with and without Intercept: Explained Simply